Distance graphs from -adic norms.
A graph is stratified if its vertex set is partitioned into classes, called strata. If there are strata, then is -stratified. These graphs were introduced to study problems in VLSI design. The strata in a stratified graph are also referred to as color classes. For a color in a stratified graph , the -eccentricity of a vertex of is the distance between and an -colored vertex furthest from . The minimum -eccentricity among the vertices of is the -radius of and the maximum...
For a set D of positive integers, we define a vertex set S ⊆ V(G) to be D-independent if u, v ∈ S implies the distance d(u,v) ∉ D. The D-independence number is the maximum cardinality of a D-independent set. In particular, the independence number . Along with general results we consider, in particular, the odd-independence number where ODD = 1,3,5,....
A distance magic labeling of a graph G = (V,E) with |V | = n is a bijection ℓ : V → {1, . . . , n} such that the weight of every vertex v, computed as the sum of the labels on the vertices in the open neighborhood of v, is a constant. In this paper, we show that hypercubes with dimension divisible by four are not distance magic. We also provide some positive results by proving necessary and sufficient conditions for the Cartesian product of certain complete multipartite graphs and the cycle on four...
Let be a tree with vertices. To each edge of we assign a weight which is a positive definite matrix of some fixed order, say, . Let denote the sum of all the weights lying in the path connecting the vertices and of . We now say that is the distance between and . Define , where is the null matrix and for , is the distance between and . Let be an arbitrary connected weighted graph with vertices, where each weight is a positive definite matrix of order . If and...
In this paper, we propose a generalization of well known kinds of perfectness of graphs in terms of distances between vertices. We introduce generalizations of α-perfect, χ-perfect, strongly perfect graphs and we establish the relations between them. Moreover, we give sufficient conditions for graphs to be perfect in generalized sense. Other generalizations of perfectness are given in papers [3] and [7].
For an integer k ≥ 1, we say that a (finite simple undirected) graph G is k-distance-locally disconnected, or simply k-locally disconnected if, for any x ∈ V (G), the set of vertices at distance at least 1 and at most k from x induces in G a disconnected graph. In this paper we study the asymptotic behavior of the number of edges of a k-locally disconnected graph on n vertices. For general graphs, we show that this number is Θ(n2) for any fixed value of k and, in the special case of regular graphs,...
A distance between finite partially ordered sets is studied. It is a certain measure of the difference of their structure.
Two types of a distance between isomorphism classes of graphs are adapted for rooted trees.
Let and be points in . Write if is a multiple of . Two different points and in uniquely determine a tropical line passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on leaves. It is also a metric graph. If some representatives and of and are the first and second columns of some real normal idempotent order matrix , we prove that the tree is described by a matrix , easily obtained from . We also prove that...
The distinguishing number D(G) of a graph G is the minimum number of colors needed to color the vertices of G such that the coloring is preserved only by the trivial automorphism. In this paper we improve results about the distinguishing number of Cartesian products of finite and infinite graphs by removing restrictions to prime or relatively prime factors.