Displaying 281 – 300 of 738

Showing per page

Indecomposable matrices over a distributive lattice

Yi Jia Tan (2006)

Czechoslovak Mathematical Journal

In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice L are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set F n ( L ) of all n × n fully indecomposable matrices as a subsemigroup of the semigroup H n ( L ) of all n × n Hall matrices over the lattice L are given.

Indexed annihilators in lattices

Ivan Chajda (1995)

Archivum Mathematicum

The concept of annihilator in lattice was introduced by M. Mandelker. Although annihilators have some properties common with ideals, the set of all annihilators in L need not be a lattice. We give the concept of indexed annihilator which generalizes it and we show the basic properties of the lattice of indexed annihilators. Moreover, distributive and modular lattices can be characterized by using of indexed annihilators.

Integer partitions, tilings of 2 D -gons and lattices

Matthieu Latapy (2002)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of 2 D -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a 2 D -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.

Integer Partitions, Tilings of 2D-gons and Lattices

Matthieu Latapy (2010)

RAIRO - Theoretical Informatics and Applications

In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of 2D-gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a 2D-gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.

Integral closure in MV-algebras.

L. Peter Belluce (2000)

Mathware and Soft Computing

We study the consequences of assuming on an MV-algebra A that Σnnx exists for each x belonging to A.

Interior and closure operators on bounded residuated lattices

Jiří Rachůnek, Zdeněk Svoboda (2014)

Open Mathematics

Bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate multiplicative interior and additive closure operators (mi- and ac-operators) generalizing topological interior and closure operators on such algebras. We describe connections between mi- and ac-operators, and for residuated lattices with Glivenko property we give connections between operators on them and on the residuated...

Interior and closure operators on bounded residuated lattice ordered monoids

Filip Švrček (2008)

Czechoslovak Mathematical Journal

G M V -algebras endowed with additive closure operators or with its duals-multiplicative interior operators (closure or interior G M V -algebras) were introduced as a non-commutative generalization of topological Boolean algebras. In the paper, the multiplicative interior and additive closure operators on D R l -monoids are introduced as natural generalizations of the multiplicative interior and additive closure operators on G M V -algebras.

Interior and Closure Operators on Commutative Bounded Residuated Lattices

Jiří Rachůnek, Zdeněk Svoboda (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.

Inverse topology in MV-algebras

Fereshteh Forouzesh, Farhad Sajadian, Mahta Bedrood (2019)

Mathematica Bohemica

We introduce the inverse topology on the set of all minimal prime ideals of an MV-algebra A and show that the set of all minimal prime ideals of A , namely Min ( A ) , with the inverse topology is a compact space, Hausdorff, T 0 -space and T 1 -space. Furthermore, we prove that the spectral topology on Min ( A ) is a zero-dimensional Hausdorff topology and show that the spectral topology on Min ( A ) is finer than the inverse topology on Min ( A ) . Finally, by open sets of the inverse topology, we define and study a congruence relation...

Invertible ideals and Gaussian semirings

Shaban Ghalandarzadeh, Peyman Nasehpour, Rafieh Razavi (2017)

Archivum Mathematicum

In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as ( I + J ) ( I J ) = I J for all ideals I , J of S . In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family...

Isometries of generalized M V -algebras

Ján Jakubík (2007)

Czechoslovak Mathematical Journal

In this paper we investigate the relations between isometries and direct product decompositions of generalized M V -algebras.

Currently displaying 281 – 300 of 738