Modal operators on symmetrical Heyting algebras
Modal pseudocomplemented De Morgan algebras (or -algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on -valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying . Firstly, a topological duality for these algebras...
We show that an ideal I of an MV-algebra A is linearly ordered if and only if every non-zero element of I is a molecule. The set of molecules of A is contained in Inf(A) ∪ B2(A) where B2(A) is the set of all elements x ∈ A such that 2x is idempotent. It is shown that I ≠ {0} is weakly essential if and only if B⊥ ⊂ B(A). Connections are shown among the classes of ideals that have various combinations of the properties of being implicative, essential, weakly essential, maximal or prime.
The concept of monadic MV-algebra was recently introduced by A. Di Nola and R. Grigolia as an algebraic formalization of the many-valued predicate calculus described formerly by J. D. Rutledge [9]. This was also genaralized by J. Rachůnek and F. Švrček for commutative residuated -monoids since MV-algebras form a particular case of this structure. Basic algebras serve as a tool for the investigations of much more wide class of non-classical logics (including MV-algebras, orthomodular lattices and...
Here we initiate an investigation into the class of monadic -valued Łukasiewicz-Moisil algebras (or -algebras), namely -valued Łukasiewicz-Moisil algebras endowed with a unary operation. These algebras constitute a generalization of monadic -valued Łukasiewicz-Moisil algebras. In this article, the congruences on these algebras are determined and subdirectly irreducible algebras are characterized. From this last result it is proved that is a discriminator variety and as a consequence, the...
We prove that there is a one to one correspondence between monadic finite quasi-modal operators on a distributive nearlattice and quantifiers on the distributive lattice of its finitely generated filters, extending the results given in ``Calomino I., Celani S., González L. J.: Quasi-modal operators on distributive nearlattices, Rev. Unión Mat. Argent. 61 (2020), 339--352".
Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied.
In the paper it is proved that the category of -algebras is equivalent to the category of bounded -semigroups satisfying the identity . Consequently, by a result of D. Mundici, both categories are equivalent to the category of bounded commutative -algebras.