Displaying 41 – 60 of 77

Showing per page

Repdigits in generalized Pell sequences

Jhon J. Bravo, Jose L. Herrera (2020)

Archivum Mathematicum

For an integer k 2 , let ( n ) n be the k - generalized Pell sequence which starts with 0 , ... , 0 , 1 ( k terms) and each term afterwards is given by the linear recurrence n = 2 n - 1 + n - 2 + + n - k . In this paper, we find all k -generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence ( P n ( 2 ) ) n .

Repdigits in the base b as sums of four balancing numbers

Refik Keskin, Faticko Erduvan (2021)

Mathematica Bohemica

The sequence of balancing numbers ( B n ) is defined by the recurrence relation B n = 6 B n - 1 - B n - 2 for n 2 with initial conditions B 0 = 0 and B 1 = 1 . B n is called the n th balancing number. In this paper, we find all repdigits in the base b , which are sums of four balancing numbers. As a result of our theorem,...

Representation functions for binary linear forms

Fang-Gang Xue (2024)

Czechoslovak Mathematical Journal

Let be the set of integers, 0 the set of nonnegative integers and F ( x 1 , x 2 ) = u 1 x 1 + u 2 x 2 be a binary linear form whose coefficients u 1 , u 2 are nonzero, relatively prime integers such that u 1 u 2 ± 1 and u 1 u 2 - 2 . Let f : 0 { } be any function such that the set f - 1 ( 0 ) has asymptotic density zero. In 2007, M. B. Nathanson (2007) proved that there exists a set A of integers such that r A , F ( n ) = f ( n ) for all integers n , where r A , F ( n ) = | { ( a , a ' ) : n = u 1 a + u 2 a ' : a , a ' A } | . We add the structure of difference for the binary linear form F ( x 1 , x 2 ) .

Representation functions with different weights

Quan-Hui Yang (2014)

Colloquium Mathematicae

For any given positive integer k, and any set A of nonnegative integers, let r 1 , k ( A , n ) denote the number of solutions of the equation n = a₁ + ka₂ with a₁,a₂ ∈ A. We prove that if k,l are multiplicatively independent integers, i.e., log k/log l is irrational, then there does not exist any set A ⊆ ℕ such that both r 1 , k ( A , n ) = r 1 , k ( A , n ) and r 1 , l ( A , n ) = r 1 , l ( A , n ) hold for all n ≥ n₀. We also pose a conjecture and two problems for further research.

Representation of finite abelian group elements by subsequence sums

David J. Grynkiewicz, Luz E. Marchan, Oscar Ordaz (2009)

Journal de Théorie des Nombres de Bordeaux

Let G C n 1 ... C n r be a finite and nontrivial abelian group with n 1 | n 2 | ... | n r . A conjecture of Hamidoune says that if W = w 1 · ... · w n is a sequence of integers, all but at most one relatively prime to | G | , and S is a sequence over G with | S | | W | + | G | - 1 | G | + 1 , the maximum multiplicity of S at most | W | , and σ ( W ) 0 mod | G | , then there exists a nontrivial subgroup H such that every element g H can be represented as a weighted subsequence sum of the form g = n i = 1 w i s i , with s 1 · ... · s n a subsequence of S . We give two examples showing this does not hold in general, and characterize the counterexamples...

Représentation par automate de fonctions continues de tore

F. Blanchard, B. Host, A. Maass (1996)

Journal de théorie des nombres de Bordeaux

Soient A p = { 0 , , p - 1 } et Z A p × A p un sous-système. Z est une représentation en base p d’une fonction f du tore si pour tout point x du tore, ses développements en base p sont liés par le couplage Z aux développements en base p de f ( x ) . On prouve que si f est représentable en base p alors f ( x ) = ( u x + m p - 1 ) mod 1 , où u et m A p . Réciproquement, toutes les fonctions de ce type sont représentables en base p par un transducteur. On montre finalement que les fonctions du tore qui peuvent être représentées par automate cellulaire sont exclusivement les multiplications...

Currently displaying 41 – 60 of 77