Partition statistics and q -Bell numbers ( q = - 1 ) . Wagner, Carl G. (2004) Journal of Integer Sequences [electronic only]
Partitioning the positive integers with higher order recurrences. Kimberling, Clark (1991) International Journal of Mathematics and Mathematical Sciences
Partitions with parts in a finite set and with parts outside a finite set. Almkvist, Gert (2002) Experimental Mathematics
Partititions of the Natural Numbers into Infinitely Oscillating Bases and Nonbases Paul Erdös, Melvyn B. Nathanson (1976) Commentarii mathematici Helvetici
Pascal's triangle, complexity and automata. (Triangle de Pascal, complexité et automates.) Allouche, Jean-Paul, Berthé, Valérie (1997) Bulletin of the Belgian Mathematical Society - Simon Stevin
Pascal's triangle (mod 9) James G. Huard, Blair K. Spearman, Kenneth S. Williams (1997) Acta Arithmetica
Pell and Pell-Lucas numbers of the form - 2 a - 3 b + 5 c Yunyun Qu, Jiwen Zeng (2020) Czechoslovak Mathematical Journal In this paper, we find all Pell and Pell-Lucas numbers written in the form - 2 a - 3 b + 5 c , in nonnegative integers a , b , c , with 0 ≤ max { a , b } ≤ c .
Perfect powers in arithmetical progression (II) T. N. Shorey, R. Tijdeman (1992) Compositio Mathematica
Perfect powers in products of terms in an arithmetical progression III T. N. Shorey, R. Tijdeman (1992) Acta Arithmetica
Perfect powers in products of terms in an arithmetical progression (II) T. N. Shorey, R. Tijdeman (1992) Compositio Mathematica
Perfect squares in the sequence 3 , 5 , 7 , 11 , ⋯ . McDaniel, Wayne L. (1998) Portugaliae Mathematica
Periodic analogues of the Euler-Maclaurin and Poisson summation formulas with applications to number theory Bruce Berndt, Lowell Schoenfeld (1975) Acta Arithmetica