Bounds for solutions of additive equations in an algebraic number field II
This paper deals with conditions of compatibility of a system of copulas and with bounds of general Fréchet classes. Algebraic search for the bounds is interpreted as a solution to a linear system of Diophantine equations. Classical analytical specification of the bounds is described.
It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields generated by a root of the polynomial , assuming that , and has no odd square factors. In addition to generators of power integral bases we also calculate the minimal...
This is an exposition of the recent work of Bugeaud, Hanrot and Mihăilescu showing that Catalan’s conjecture can be proved without using logarithmic forms and electronic computations.
The subject of the talk is the recent work of Mihăilescu, who proved that the equation has no solutions in non-zero integers and odd primes . Together with the results of Lebesgue (1850) and Ko Chao (1865) this implies the celebratedconjecture of Catalan (1843): the only solution to in integers and is . Before the work of Mihăilescu the most definitive result on Catalan’s problem was due to Tijdeman (1976), who proved that the solutions of Catalan’s equation are bounded by an absolute...
We shall describe how to construct a fundamental solution for the Pell equation over finite fields of characteristic . Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation .