Determination of elliptic curves with everywhere good reduction over ℚ(√37)
In this paper the special diophantine equation with integer coefficients is discussed and integer solutions are sought. This equation is solved completely just for four prime divisors of .
These are expository notes that accompany my talk at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed light on the following two questions:(i)Given a Diophantine equation, what information can be obtained by following the strategy of Wiles’ proof of Fermat’s Last Theorem?(ii)Is it useful to combine this approach with traditional approaches to Diophantine equations: Diophantine approximation, arithmetic geometry, ...?
Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and , and let denote the class number of the imaginary quadratic field . In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then , where D, and n satisfy , x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.
We study the Diophantine equations and where and are positive integers. We show that the first one holds if and only if or and that the second one holds if and only if .