Displaying 21 – 40 of 64

Showing per page

Diophantine equations after Fermat’s last theorem

Samir Siksek (2009)

Journal de Théorie des Nombres de Bordeaux

These are expository notes that accompany my talk at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed light on the following two questions:(i)Given a Diophantine equation, what information can be obtained by following the strategy of Wiles’ proof of Fermat’s Last Theorem?(ii)Is it useful to combine this approach with traditional approaches to Diophantine equations: Diophantine approximation, arithmetic geometry, ...?

Diophantine equations and class number of imaginary quadratic fields

Zhenfu Cao, Xiaolei Dong (2000)

Discussiones Mathematicae - General Algebra and Applications

Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and μ i - 1 , 1 ( i = 1 , 2 ) , and let h ( - 2 1 - e D ) ( e = 0 o r 1 ) denote the class number of the imaginary quadratic field ( ( - 2 1 - e D ) ) . In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then h ( - 2 1 - e D ) 0 ( m o d n ) , where D, and n satisfy k - 2 e + 1 = D x ² , x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.

Diophantine equations involving factorials

Horst Alzer, Florian Luca (2017)

Mathematica Bohemica

We study the Diophantine equations ( k ! ) n - k n = ( n ! ) k - n k and ( k ! ) n + k n = ( n ! ) k + n k , where k and n are positive integers. We show that the first one holds if and only if k = n or ( k , n ) = ( 1 , 2 ) , ( 2 , 1 ) and that the second one holds if and only if k = n .

Currently displaying 21 – 40 of 64