On Even Unimodular Positive Definite Quadratic Lattices of Rank 32.
Let be a totally real algebraic number field whose ring of integers is a principal ideal domain. Let be a totally definite ternary quadratic form with coefficients in . We shall study representations of totally positive elements by . We prove a quantitative formula relating the number of representations of by different classes in the genus of to the class number of , where is a constant depending only on . We give an algebraic proof of a classical result of H. Maass on representations...
We find complete sets of generating relations between the elements [r] = rⁿ - r for and for n = 3. One of these relations is the n-derivation property [rs] = rⁿ[s] + s[r], r,s ∈ R.
We give a necessary condition for a surjective representation Gal to arise from the -torsion of a -curve. We pay a special attention to the case of quadratic -curves.