Representations of discriminantal divisors by binary quadratic forms.
This paper studies the representation of a non-negative polynomial f on a non-compact semi-algebraic set K modulo its KKT (Karush-Kuhn-Tucker) ideal. Under the assumption that f satisfies the boundary Hessian conditions (BHC) at each zero of f in K, we show that f can be represented as a sum of squares (SOS) of real polynomials modulo its KKT ideal if f ≥ 0 on K.
Soit un produit de polynômes cyclotomiques. Existe-t-il une forme bilinéaire symétrique entière, unimodulaire et définie positive ayant une isométrie de polynôme caractéristique ? Ce travail donne une réponse partielle à cette question.
Pour tout entier et certains entiers , les nombres premiers - congrus à 1 modulo - tels que soit le résidu d’une puissance -ième modulo sont caractérisés par le fait que certains systèmes de formes quadratiques à coefficients entiers en variables représentent le -uplet . La démonstration de ce résultat est accompagnée d’une méthode explicite de construction de ces systèmes.