Displaying 721 – 740 of 1236

Showing per page

Quelques questions d’approximation faible pour les tores algébriques

Jean-Louis Colliot-Thélène, Venapally Suresh (2007)

Annales de l’institut Fourier

Soient K un corps global, T un K -tore, S un ensemble fini de places de K . On note K v le complété de K en v S . Soit T ( K ) , resp. T ( K v ) , le groupe des points K -rationnels, resp. K v -rationnels, de T . Notons T ( O v ) T ( K v ) le sous-groupe compact maximal. Nous montrons que pour T et S convenables l’application T ( K ) v S T ( K v ) / T ( O v ) induite par l’application diagonale n’est pas surjective. Cela implique que pour v convenable le groupe T ( O v ) ne couvre pas forcément toutes les classes de R -équivalence de T ( K v ) . Lorsque K est un corps de fonctions d’une variable...

Quotients of index two and general quotients in a space of orderings

Paweł Gładki, Murray Marshall (2015)

Fundamenta Mathematicae

We investigate quotient structures and quotient spaces of a space of orderings arising from subgroups of index two. We provide necessary and sufficient conditions for a quotient structure to be a quotient space that, among other things, depend on the stability index of the given space. The case of the space of orderings of the field ℚ(x) is particularly interesting, since then the theory developed simplifies significantly. A part of the theory firstly developed for quotients of index 2 generalizes...

Random Thue and Fermat equations

Rainer Dietmann, Oscar Marmon (2015)

Acta Arithmetica

We consider Thue equations of the form a x k + b y k = 1 , and assuming the truth of the abc-conjecture, we show that almost all locally soluble Thue equations of degree at least three violate the Hasse principle. A similar conclusion holds true for Fermat equations a x k + b y k + c z k = 0 of degree at least six.

Rational base number systems for p-adic numbers

Christiane Frougny, Karel Klouda (2012)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

This paper deals with rational base number systems for p-adic numbers. We mainly focus on the system proposed by Akiyama et al. in 2008, but we also show that this system is in some sense isomorphic to some other rational base number systems by means of finite transducers. We identify the numbers with finite and eventually periodic representations and we also determine the number of representations of a given p-adic number.

Rational base number systems for p-adic numbers

Christiane Frougny, Karel Klouda (2012)

RAIRO - Theoretical Informatics and Applications

This paper deals with rational base number systems for p-adic numbers. We mainly focus on the system proposed by Akiyama et al. in 2008, but we also show that this system is in some sense isomorphic to some other rational base number systems by means of finite transducers. We identify the numbers with finite and eventually periodic representations and we also determine the number of representations of a given p-adic number.

Currently displaying 721 – 740 of 1236