The Capelli identity and unitary representations
Siddhartha Sahi (1992)
Compositio Mathematica
Daniel Skodlerack (2013)
Annales de l’institut Fourier
Let be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let be the centralizer of a semisimple rational Lie algebra element of We prove that the Bruhat-Tits building of can be affinely and -equivariantly embedded in the Bruhat-Tits building of so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let and be maps from to which preserve the Moy–Prasad filtrations. We prove that...
James G. Huard, Pierre Kaplan, Kenneth S. Williams (1995)
Acta Arithmetica
Henryk Iwaniec, Ritabrata Munshi (2010)
Journal de Théorie des Nombres de Bordeaux
We give non-trivial upper bounds for the number of integral solutions, of given size, of a system of two quadratic form equations in five variables.
Kenneth Hardy, Kenneth Williams (1989)
Acta Arithmetica
Kok Onn Ng (1995)
Journal für die reine und angewandte Mathematik
Jorge Morales (1991)
Acta Arithmetica
Ahmet Tekcan, Osman Bizim (2003)
Mathematica Bohemica
In this paper some properties of quadratic forms whose base points lie in the point set , the fundamental domain of the modular group, and transforming these forms into the reduced forms with the same discriminant are given.
O.T.O. O'Meara (1975)
Journal für die reine und angewandte Mathematik
Tekcan, Ahmet (2010)
Acta Universitatis Apulensis. Mathematics - Informatics
D. R. Heath-Brown (1997)
Acta Arithmetica
Peters, Meinhard (2004)
Experimental Mathematics
Paul Ponomarev (1981)
Mathematische Annalen
Zhi-Hong Sun (2008)
Acta Arithmetica
Pierre Kaplan, Kenneth S. Williams (2002)
Acta Arithmetica
Marc A. Berger, Shmuel Friedland (1986)
Compositio Mathematica
Rudolf Scharlau, Boris B. Venkov (1994)
Commentarii mathematici Helvetici
John Ewing (1979)
Mathematische Zeitschrift
Beata Rothkegel (2013)
Acta Arithmetica
Let R be a Dedekind domain whose field of fractions is a global field. Moreover, let 𝓞 < R be an order. We examine the image of the natural homomorphism φ : W𝓞 → WR of the corresponding Witt rings. We formulate necessary and sufficient conditions for the surjectivity of φ in the case of all nonreal quadratic number fields, all real quadratic number fields K such that -1 is a norm in the extension K/ℚ, and all quadratic function fields.
Steven Arno (1992)
Acta Arithmetica