Die Congruenzgruppen der sechsten Stufe. (Mit einer Figurentafel)
Fricke (1887)
Mathematische Annalen
Rolf Berndt (1986)
Mathematische Zeitschrift
G. Harder, W.-C.W Li, J.R. Weisinger (1980)
Journal für die reine und angewandte Mathematik
Jordi Quer (2010)
Acta Arithmetica
I.I. Piatetski-Shapiro, St. Gelbart (1980)
Inventiones mathematicae
J. Sengupta (2004)
Acta Arithmetica
W. Narkiewicz (1983)
Acta Arithmetica
Ono, Ken (2000)
Annals of Mathematics. Second Series
Kazuyuki Hatada (1979)
Mathematische Annalen
Jürgen Kallies (1985)
Journal für die reine und angewandte Mathematik
R. Sczech (1978)
Mathematische Annalen
Reinhard Schertz (1983)
Manuscripta mathematica
Robert Sczech (1992)
Commentarii mathematici Helvetici
Wen-Ch'ing Winnie Li (1979)
Mathematische Annalen
Roelof W. Bruggemen (1989)
Mathematische Zeitschrift
J. Elstrodt, F. Grunewald (1985)
Journal für die reine und angewandte Mathematik
Alexander F. Brown, Eknath P. Ghate (2003)
Annales de l’institut Fourier
We study the endomorphism algebra of the motive attached to a non-CM elliptic modular cusp form. We prove that this algebra has a sub-algebra isomorphic to a certain crossed product algebra . The Tate conjecture predicts that is the full endomorphism algebra of the motive. We also investigate the Brauer class of . For example we show that if the nebentypus is real and is a prime that does not divide the level, then the local behaviour of at a place lying above is essentially determined...
J.-L. Waldspurger (1978/1979)
Inventiones mathematicae
Josep Gonzalez Rovira (1991)
Annales de l'institut Fourier
We compute, in a unified way, the equations of all hyperelliptic modular curves. The main tool is provided by a class of modular functions introduced by Newman in 1957. The method uses the action of the hyperelliptic involution on the cusps.
Dmitri Jakobson (1997)
Annales de l'institut Fourier
We prove a microlocal version of the equidistribution theorem for Wigner distributions associated to cusp forms on . This generalizes a recent result of W. Luo and P. Sarnak who prove equidistribution on .