Modular Forms Associated to Real Quadratic Fields.
1. Introduction. Since its genesis over a century ago in work of Jacobi, Riemann, Poincar ́e and Klein [Ja29, Ri53, Le64], the theory of automorphic forms has burgeoned from a branch of analytic number theory into an industry all its own. Natural extensions of the theory are to integrals [Ei57, Kn94a, KS96, Sh94], thereby encompassing Hurwitz’s prototype, the analytic weight 2 Eisenstein series [Hu81], and to nonanalytic forms [He59, Ma64, Sel56, ER74, Fr85]. A generalization in both directions...
We consider to be the -function attached to a particular automorphic form on . We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg -function . As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of .