Loading [MathJax]/extensions/MathZoom.js
Displaying 101 –
120 of
139
On établit le développement spectral de la formule des traces d’Arthur-Selberg sur les corps de fonctions pour un groupe réductif connexe déployé sur un corps fini en partant seulement du théorème de décomposition spectrale de Langlands. Notre preuve généralise la méthode de Lafforgue dans le cas des groupes linéaires .
On définit, en réponse à une question de Sarnak dans sa lettre a Bombieri [Sar01], un accouplement symplectique sur l’interprétation spectrale (due à Connes et Meyer) des zéros de la fonction zêta. Cet accouplement donne une formulation purement spectrale de la démonstration de l’équation fonctionnelle due à Tate, Weil et Iwasawa, qui, dans le cas d’une courbe sur un corps fini, correspond à la démonstration géométrique usuelle par utilisation de l’accouplement de dualité de Poincaré Frobenius-équivariant...
We study the infinitesimal generator of the Lax-Phillips semigroup of the automorphic scattering system defined on the Poincaré upper half-plane for SL₂(ℤ). We show that its spectrum consists only of the poles of the resolvent of the generator, and coincides with the poles of the scattering matrix, counted with multiplicities. Using this we construct an operator whose eigenvalues, counted with algebraic multiplicities (i.e. dimensions of generalized eigenspaces), are precisely the non-trivial zeros...
In this paper we compute the trace formula for Hecke operators acting on automorphic forms on the hyperbolic 3-space for the group PSL2() with being the ring of integers of an imaginary quadratic number field K of class number H K > 1. Furthermore, as a corollary we obtain an asymptotic result for class numbers of binary quadratic forms.
Currently displaying 101 –
120 of
139