A Dimension Formular for a Certain Space of Automorphic Forms of SU (p,1).
Let be an arithmetic ring of Krull dimension at most 1, and an -pointed stable curve of genus . Write . The invertible sheaf inherits a hermitian structure from the dual of the hyperbolic metric on the Riemann surface . In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of . The theorem is applied to modular curves , or , prime, with sections given by the cusps. We show , with when . Here is the Selberg zeta...
Let be a finite-volume quotient of the upper-half space, where is a discrete subgroup. To a finite dimensional unitary representation of one associates the Selberg zeta function . In this paper we prove the Artin formalism for the Selberg zeta function. Namely, if is a finite index group extension of in , and is the induced representation, then . In the second part of the paper we prove by a direct method the analogous identity for the scattering function, namely , for an appropriate...