On the Diophantine equation f(y) - x = 0
We give upper and lower bounds for the number of points on abelian varieties over finite fields, and lower bounds specific to Jacobian varieties. We also determine exact formulas for the maximum and minimum number of points on Jacobian surfaces.
We prove lower and upper bounds for the class numbers of algebraic curves defined over finite fields. These bounds turn out to be better than most of the previously known bounds obtained using combinatorics. The methods used in the proof are essentially those from the explicit asymptotic theory of global fields. We thus provide a concrete application of effective results from the asymptotic theory of global fields and their zeta functions.
Consider two families of hyperelliptic curves (over ℚ), and , and their respective Jacobians , . We give a partial characterization of the torsion part of and . More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of n (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of . Namely, we show that . In addition, we characterize the torsion parts of , where p is an odd prime, and...
We obtain an estimate on the average cardinality (d,s,a) of the value set of any family of monic polynomials in of degree d for which s consecutive coefficients are fixed. Our estimate asserts that , where . We also prove that , where ₂(d,s,a) is the average second moment of the value set cardinalities for any family of monic polynomials of of degree d with s consecutive coefficients fixed as above. Finally, we show that , where ₂(d,0) denotes the average second moment for all monic polynomials...
For a variety over a local field, Bloch proposed a conjectural formula for the alternating sum of Artin conductor of -adic cohomology. We prove that the formula is valid modulo 2 if the variety has even dimension.
Je présenterai des résultats de T. Ekedahl et H. Esnault sur les variétés projectives lisses sur un corps de caractéristique strictement positive, disons , dont deux points peuvent être liés par une chaîne de courbes rationnelles, par exemple faiblement unirationnelles, ou de Fano. Notamment : 1) sur un corps fini, de telles variétés ont un point rationnel, résultat qui généralise le théorème de Chevalley-Warning ; 2) sur un corps algébriquement clos, de telles variétés ont un groupe fondamental...
Let be a field of characteristic . Let be a over (i.e., an -truncated Barsotti–Tate group over ). Let be a -scheme and let be a over . Let be the subscheme of which describes the locus where is locally for the fppf topology isomorphic to . If , we show that is pure in , i.e. the immersion is affine. For , we prove purity if satisfies a certain technical property depending only on its -torsion . For , we apply the developed techniques to show that all level ...
I discuss some algorithms for computing the zeta function of an algebraic variety over a finite field which are based upon rigid cohomology. Two distinct approaches are illustrated with a worked example.
Classical sieve methods of analytic number theory have recently been adapted to a geometric setting. In the new setting, the primes are replaced by the closed points of a variety over a finite field or more generally of a scheme of finite type over . We will present the method and some of the surprising results that have been proved using it. For instance, the probability that a plane curve over is smooth is asymptotically as its degree tends to infinity. Much of this paper is an exposition...
On étudie le comportement des faisceaux -adiques entiers sur les schémas de type fini sur un corps local par les six opérations et le foncteur des cycles proches.
Let be a Henselian discrete valuation ring with field of fractions . If is a smooth variety over and a torus over , then we consider -torsors under . If is a model of then, using a result of Brahm, we show that -torsors under extend to -torsors under a Néron model of if is split by a tamely ramified extension of . It follows that the evaluation map associated to such a torsor factors through reduction to the special fibre. In this way we can use the geometry of the special...