Corrigendum - Points entiers et théorèmes de Bertini arithmétiques
Let be an elliptic curve defined over with conductor and denote by the modular parametrization:In this paper, we are concerned with the critical and ramification points of . In particular, we explain how we can obtain a more or less experimental study of these points.
Nous étudions la structure de certains espaces homogènes principaux associés aux éléments du groupe de Selmer d’une courbe elliptique à multiplication complexe. Nous utilisons des résultats de Rubin pour construire, à partir des unités elliptiques, des espaces homogènes principaux de structure galoisienne non triviale. Cette construction fournit un lien nouveau entre un problème de structure galoisienne et certaines fonctions -adiques.
In this paper, we develop the Euler system theory for Galois deformations. By applying this theory to the Beilinson-Kato Euler system for Hida’s nearly ordinary modular deformations, we prove one of the inequalities predicted by the two-variable Iwasawa main conjecture. Our method of the proof of the Euler system theory is based on non-arithmetic specializations. This gives a new simplified proof of the inequality between the characteristic ideal of the Selmer group of a Galois deformation and the...
On construit une fonction -adique arithmétique associée à une courbe elliptique ayant bonne réduction en , fonction à valeurs dans son module de Dieudonné en . On donne le lien conjectural avec les fonctions de Mazur et Swinnerton-Dyuer d’une part et les éléments de Beilinson-Kato d’autre part et on énonce une conjecture principale". On calcule aussi les termes dominants de cette fonction -adique aux entiers en liaison avec les conjectures -adiques du tupe Birch et Swinnerton-Dyer et Bloch-Kato....
Ce papier présente les récents progrès concernant les fonctions zêta des hauteurs associées à la conjecture de Manin. En particulier, des exemples où on peut prouver un prolongement méromorphe de ces fonctions sont détaillés.