Displaying 321 – 340 of 1274

Showing per page

Endomorphism algebras of motives attached to elliptic modular forms

Alexander F. Brown, Eknath P. Ghate (2003)

Annales de l’institut Fourier

We study the endomorphism algebra of the motive attached to a non-CM elliptic modular cusp form. We prove that this algebra has a sub-algebra isomorphic to a certain crossed product algebra X . The Tate conjecture predicts that X is the full endomorphism algebra of the motive. We also investigate the Brauer class of X . For example we show that if the nebentypus is real and p is a prime that does not divide the level, then the local behaviour of X at a place lying above p is essentially determined...

Equations for Mahler measure and isogenies

Matilde N. Lalín (2013)

Journal de Théorie des Nombres de Bordeaux

We study some functional equations between Mahler measures of genus-one curves in terms of isogenies between the curves. These equations have the potential to establish relationships between Mahler measure and especial values of L -functions. These notes are based on a talk that the author gave at the “Cuartas Jornadas de Teoría de Números”, Bilbao, 2011.

Equations of hyperelliptic modular curves

Josep Gonzalez Rovira (1991)

Annales de l'institut Fourier

We compute, in a unified way, the equations of all hyperelliptic modular curves. The main tool is provided by a class of modular functions introduced by Newman in 1957. The method uses the action of the hyperelliptic involution on the cusps.

Equidistribution and the heights of totally real and totally p-adic numbers

Paul Fili, Zachary Miner (2015)

Acta Arithmetica

C. J. Smyth was among the first to study the spectrum of the Weil height in the field of all totally real numbers, establishing both lower and upper bounds for the limit infimum of the height of all totally real integers, and determining isolated values of the height. Later, Bombieri and Zannier established similar results for totally p-adic numbers and, inspired by work of Ullmo and Zhang, termed this the Bogomolov property. In this paper, we use results on equidistribution of points of low height...

Équidistribution des sous-variétés de petite hauteur

Pascal Autissier (2006)

Journal de Théorie des Nombres de Bordeaux

On montre dans cet article que le théorème d’équidistribution de Szpiro-Ullmo-Zhang concernant les suites de petits points sur les variétés abéliennes s’étend au cas des suites de sous-variétés. On donne également une version quantitative de ce résultat.

Equidistribution of Small Points, Rational Dynamics, and Potential Theory

Matthew H. Baker, Robert Rumely (2006)

Annales de l’institut Fourier

Given a rational function ϕ ( T ) on 1 of degree at least 2 with coefficients in a number field k , we show that for each place v of k , there is a unique probability measure μ ϕ , v on the Berkovich space Berk , v 1 / v such that if { z n } is a sequence of points in 1 ( k ¯ ) whose ϕ -canonical heights tend to zero, then the z n ’s and their Gal ( k ¯ / k ) -conjugates are equidistributed with respect to μ ϕ , v .The proof uses a polynomial lift F ( x , y ) = ( F 1 ( x , y ) , F 2 ( x , y ) ) of ϕ to construct a two-variable Arakelov-Green’s function g ϕ , v ( x , y ) for each v . The measure μ ϕ , v is obtained by taking the...

Equivalences between elliptic curves and real quadratic congruence function fields

Andreas Stein (1997)

Journal de théorie des nombres de Bordeaux

In 1994, the well-known Diffie-Hellman key exchange protocol was for the first time implemented in a non-group based setting. Here, the underlying key space was the set of reduced principal ideals of a real quadratic number field. This set does not possess a group structure, but instead exhibits a so-called infrastructure. More recently, the scheme was extended to real quadratic congruence function fields, whose set of reduced principal ideals has a similar infrastructure. As always, the security...

Currently displaying 321 – 340 of 1274