The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 45

Showing per page

Linear independence of linear forms in polylogarithms

Raffaele Marcovecchio (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

For x , | x | < 1 , s , let Li s ( x ) be the s -th polylogarithm of x . We prove that for any non-zero algebraic number α such that | α | < 1 , the ( α ) -vector space spanned by 1 , Li 1 ( α ) , Li 2 ( α ) , has infinite dimension. This result extends a previous one by Rivoal for rational α . The main tool is a method introduced by Fischler and Rivoal, which shows the coefficients of the polylogarithms in the relevant series to be the unique solution of a suitable Padé approximation problem.

Local and canonical heights of subvarieties

Walter Gubler (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Classical results of Weil, Néron and Tate are generalized to local heights of subvarieties with respect to hermitian pseudo-divisors. The local heights are well-defined if the intersection of supports is empty. In the archimedean case, the metrics are hermitian and the local heights are defined by a refined version of the * -product of Gillet-Soulé developped on compact varieties without assuming regularity. In the non-archimedean case, the local heights are intersection numbers using methods from...

Local Indecomposability of Hilbert Modular Galois Representations

Bin Zhao (2014)

Annales de l’institut Fourier

We prove the indecomposability of the Galois representation restricted to the p -decomposition group attached to a non CM nearly p -ordinary weight two Hilbert modular form over a totally real field F under the assumption that either the degree of F over is odd or the automorphic representation attached to the Hilbert modular form is square integrable at some finite place of F .

Local-global principle for certain biquadratic normic bundles

Yang Cao, Yongqi Liang (2014)

Acta Arithmetica

Let X be a proper smooth variety having an affine open subset defined by the normic equation N k ( a , b ) / k ( x ) = Q ( t , . . . , t ) ² over a number field k. We prove that: (1) the failure of the local-global principle for zero-cycles is controlled by the Brauer group of X; (2) the analogue for rational points is also valid assuming Schinzel’s hypothesis.

Local-global principle for Witt equivalence of function fields over global fields

Przemyslaw Koprowski (2002)

Colloquium Mathematicae

We examine the conditions for two algebraic function fields over global fields to be Witt equivalent. We develop a criterion solving the problem which is analogous to the local-global principle for Witt equivalence of global fields obtained by R. Perlis, K. Szymiczek, P. E. Conner and R. Litherland [12]. Subsequently, we derive some immediate consequences of this result. In particular we show that Witt equivalence of algebraic function fields (that have rational places) over global fields implies...

Loi de réciprocité quadratique dans les corps quadratiques imaginaires

Abdelmejid Bayad (1995)

Annales de l'institut Fourier

À partir d’une courbe elliptique définie sur le corps des classes de Hilbert d’un corps quadratique imaginaire K et à multiplicité complexe par l’anneau des entiers de K , on construit des fonctions elliptiques. Nous établissons des formules produits relatives à ces fonctions. De ce fait, nous obtenons une formulation analytique du lemme de Gauss généralisé ainsi qu’une expression explicite pour le symbole quadratique de Legendre défini sur l’anneau des entiers du corps quadratique imaginaire. Comme...

Currently displaying 21 – 40 of 45