On the Tate-Shafarevich group of semistable elliptic curves with a rational 3-torsion
Consider two families of hyperelliptic curves (over ℚ), and , and their respective Jacobians , . We give a partial characterization of the torsion part of and . More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of n (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of . Namely, we show that . In addition, we characterize the torsion parts of , where p is an odd prime, and...
We explicitly determine the elliptic surfaces with section and maximal singular fibre. If the characteristic of the ground field is different from , for each of the two possible maximal fibre types, and , the surface is unique. In characteristic the maximal fibre types are and , and there exist two (resp. one) one-parameter families of such surfaces.
We obtain an estimate on the average cardinality (d,s,a) of the value set of any family of monic polynomials in of degree d for which s consecutive coefficients are fixed. Our estimate asserts that , where . We also prove that , where ₂(d,s,a) is the average second moment of the value set cardinalities for any family of monic polynomials of of degree d with s consecutive coefficients fixed as above. Finally, we show that , where ₂(d,0) denotes the average second moment for all monic polynomials...
Let L be a finite Galois CM-extension of a totally real field K. We show that the validity of an appropriate special case of the Equivariant Tamagawa Number Conjecture leads to a natural construction for each odd prime p of explicit elements in the (non-commutative) Fitting invariants over of a certain tame ray class group, and hence also in the analogous Fitting invariants of the p-primary part of the ideal class group of L. These elements involve the values at s=1 of the Artin L-series of characters...
Let be a prime and let be a number field. Let be the Galois representation given by the Galois action on the -adic Tate module of an elliptic curve over . Serre showed that the image of is open if has no complex multiplication. For an elliptic curve over whose -invariant does not appear in an exceptional finite set (which is non-explicit however), we give an explicit uniform lower bound of the size of the image of .
Stein and Watkins conjectured that for a certain family of elliptic curves E, the X₀(N)-optimal curve and the X₁(N)-optimal curve of the isogeny class 𝓒 containing E of conductor N differ by a 3-isogeny. In this paper, we show that this conjecture is true.
For i = 0,1, let be the -optimal curve of an isogeny class of elliptic curves defined over ℚ of conductor N. Stein and Watkins conjectured that E₀ and E₁ differ by a 5-isogeny if and only if E₀ = X₀(11) and E₁ = X₁(11). In this paper, we show that this conjecture is true if N is square-free and is not divisible by 5. On the other hand, Hadano conjectured that for an elliptic curve E defined over ℚ with a rational point P of order 5, the 5-isogenous curve E’ := E/⟨P⟩ has a rational point of order...