Displaying 1121 – 1140 of 1274

Showing per page

The GL2 main conjecture for elliptic curves without complex multiplication

John Coates, Takako Fukaya, Kazuya Kato, Ramdorai Sujatha, Otmar Venjakob (2005)

Publications Mathématiques de l'IHÉS

Let G be a compact p-adic Lie group, with no element of order p, and having a closed normal subgroup H such that G/H is isomorphic to Zp. We prove the existence of a canonical Ore set S* of non-zero divisors in the Iwasawa algebra Λ(G) of G, which seems to be particularly relevant for arithmetic applications. Using localization with respect to S*, we are able to define a characteristic element for every finitely generated Λ(G)-module M which has the property that the quotient of M by its p-primary...

The integral points on elliptic curves y 2 = x 3 + ( 36 n 2 - 9 ) x - 2 ( 36 n 2 - 5 )

Hai Yang, Ruiqin Fu (2013)

Czechoslovak Mathematical Journal

Let n be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if n > 1 and both 6 n 2 - 1 and 12 n 2 + 1 are odd primes, then the general elliptic curve y 2 = x 3 + ( 36 n 2 - 9 ) x - 2 ( 36 n 2 - 5 ) has only the integral point ( x , y ) = ( 2 , 0 ) . By this result we can get that the above elliptic curve has only the trivial integral point for n = 3 , 13 , 17 etc. Thus it can be seen that the elliptic curve y 2 = x 3 + 27 x - 62 really is an unusual elliptic curve which has large integral points.

The intersection of a curve with algebraic subgroups in a product of elliptic curves

Evelina Viada (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider an irreducible curve 𝒞 in E n , where E is an elliptic curve and 𝒞 and E are both defined over ¯ . Assuming that 𝒞 is not contained in any translate of a proper algebraic subgroup of E n , we show that the points of the union 𝒞 A ( ¯ ) , where A ranges over all proper algebraic subgroups of E n , form a set of bounded canonical height. Furthermore, if E has Complex Multiplication then the set 𝒞 A ( ¯ ) , for A ranging over all algebraic subgroups of E n of codimension at least 2 , is finite. If E has no Complex Multiplication...

The Ljunggren equation revisited

Konstantinos A. Draziotis (2007)

Colloquium Mathematicae

We study the Ljunggren equation Y² + 1 = 2X⁴ using the "multiplication by 2" method of Chabauty.

The modified diagonal cycle on the triple product of a pointed curve

Benedict H. Gross, Chad Schoen (1995)

Annales de l'institut Fourier

Let X be a curve over a field k with a rational point e . We define a canonical cycle Δ e Z 2 ( X 3 ) hom . Suppose that k is a number field and that X has semi-stable reduction over the integers of k with fiber components non-singular. We construct a regular model of X 3 and show that the height pairing τ * ( Δ e ) , τ * ' ( Δ e ) is well defined where τ and τ ' are correspondences. The paper ends with a brief discussion of heights and L -functions in the case that X is a modular curve.

The Mordell–Lang question for endomorphisms of semiabelian varieties

Dragos Ghioca, Thomas Tucker, Michael E. Zieve (2011)

Journal de Théorie des Nombres de Bordeaux

The Mordell–Lang conjecture describes the intersection of a finitely generated subgroup with a closed subvariety of a semiabelian variety. Equivalently, this conjecture describes the intersection of closed subvarieties with the set of images of the origin under a finitely generated semigroup of translations. We study the analogous question in which the translations are replaced by algebraic group endomorphisms (and the origin is replaced by another point). We show that the conclusion of the Mordell–Lang...

The Mordell-Weil bases for the elliptic curve y 2 = x 3 - m 2 x + m 2

Sudhansu Sekhar Rout, Abhishek Juyal (2021)

Czechoslovak Mathematical Journal

Let D m be an elliptic curve over of the form y 2 = x 3 - m 2 x + m 2 , where m is an integer. In this paper we prove that the two points P - 1 = ( - m , m ) and P 0 = ( 0 , m ) on D m can be extended to a basis for D m ( ) under certain conditions described explicitly.

The Mumford-Tate group of 1-motives

Cristiana Bertolin (2002)

Annales de l’institut Fourier

In this paper we study the structure and the degeneracies of the Mumford-Tate group M T ( M ) of a 1-motive M defined over . This group is an algebraic - group acting on the Hodge realization of M and endowed with an increasing filtration W . We prove that the unipotent radical of M T ( M ) , which is W - 1 ( M T ( M ) ) , injects into a “generalized” Heisenberg group. We then explain how to reduce to the study of the Mumford-Tate group of a direct sum of 1-motives whose torus’character group and whose lattice are both of rank 1....

Currently displaying 1121 – 1140 of 1274