Displaying 141 – 160 of 192

Showing per page

On the heights of totally p -adic numbers

Paul Fili (2014)

Journal de Théorie des Nombres de Bordeaux

Bombieri and Zannier established lower and upper bounds for the limit infimum of the Weil height in fields of totally p -adic numbers and generalizations thereof. In this paper, we use potential theoretic techniques to generalize the upper bounds from their paper and, under the assumption of integrality, to improve slightly upon their bounds.

On the number of elliptic curves with CM cover large algebraic fields

Gerhard Frey, Moshe Jarden (2005)

Annales de l'institut Fourier

Elliptic curves with CM unveil a new phenomenon in the theory of large algebraic fields. Rather than drawing a line between 0 and 1 or 1 and 2 they give an example where the line goes beween 2 and 3 and another one where the line goes between 3 and 4 .

On the number of rational points of Jacobians over finite fields

Philippe Lebacque, Alexey Zykin (2015)

Acta Arithmetica

We prove lower and upper bounds for the class numbers of algebraic curves defined over finite fields. These bounds turn out to be better than most of the previously known bounds obtained using combinatorics. The methods used in the proof are essentially those from the explicit asymptotic theory of global fields. We thus provide a concrete application of effective results from the asymptotic theory of global fields and their zeta functions.

On the order three Brauer classes for cubic surfaces

Andreas-Stephan Elsenhans, Jörg Jahnel (2012)

Open Mathematics

We describe a method to compute the Brauer-Manin obstruction for smooth cubic surfaces over ℚ such that Br(S)/Br(ℚ) is a 3-group. Our approach is to associate a Brauer class with every ordered triplet of Galois invariant pairs of Steiner trihedra. We show that all order three Brauer classes may be obtained in this way. To show the effect of the obstruction, we give explicit examples.

On the orthogonal symmetry of L-functions of a family of Hecke Grössencharacters

J. B. Conrey, N. C. Snaith (2013)

Acta Arithmetica

The family of symmetric powers of an L-function associated with an elliptic curve with complex multiplication has received much attention from algebraic, automorphic and p-adic points of view. Here we examine one explicit such family from the perspectives of classical analytic number theory and random matrix theory, especially focusing on evidence for the symmetry type of the family. In particular, we investigate the values at the central point and give evidence that this family can be modeled by...

Currently displaying 141 – 160 of 192