Rational approximation to real points on conics
A point with coordinates in a subfield of of transcendence degree one over , with linearly independent over , may have a uniform exponent of approximation by elements of that is strictly larger than the lower bound given by Dirichlet’s box principle. This appeared as a surprise, in connection to work of Davenport and Schmidt, for points of the parabola . The goal of this paper is to show that this phenomenon extends to all real conics defined over , and that the largest exponent of...