Page 1

Displaying 1 – 5 of 5

Showing per page

Diophantine approximation and special Liouville numbers

Johannes Schleischitz (2013)

Communications in Mathematics

This paper introduces some methods to determine the simultaneous approximation constants of a class of well approximable numbers ζ 1 , ζ 2 , ... , ζ k . The approach relies on results on the connection between the set of all s -adic expansions ( s 2 ) of ζ 1 , ζ 2 , ... , ζ k and their associated approximation constants. As an application, explicit construction of real numbers ζ 1 , ζ 2 , ... , ζ k with prescribed approximation properties are deduced and illustrated by Matlab plots.

Diophantine approximation in Banach spaces

Lior Fishman, David Simmons, Mariusz Urbański (2014)

Journal de Théorie des Nombres de Bordeaux

In this paper, we extend the theory of simultaneous Diophantine approximation to infinite dimensions. Moreover, we discuss Dirichlet-type theorems in a very general framework and define what it means for such a theorem to be optimal. We show that optimality is implied by but does not imply the existence of badly approximable points.

Distances dans la suite des multiples d'un point du tore à deux dimensions

Nicolas Chevallier (1996)

Acta Arithmetica

Introduction. Soit θ un élément de ¹=ℝ/ℤ. Considérons la suite des multiples de θ, x = ( n θ ) n . Pour tout n ∈ ℕ, ordonnons les n+1 premiers termes de cette suite, 0 = y₀ ≤ y₁ ≤...≤ yₙ ≤ 1 = pθ, p=0,...,n. La suite (y₀,...,yₙ) découpe l’intervalle [0,1] en n+1 intervalles qui ont au plus trois longueurs distinctes, la plus grande de ces longueurs étant la somme des deux autres. Cette propriété a été conjecturé par Steinhaus, elle est étroitement liée au développement en fraction continue de θ. On peut aussi...

Currently displaying 1 – 5 of 5

Page 1