Diophantine approximation and certain sequences of lattices
This paper introduces some methods to determine the simultaneous approximation constants of a class of well approximable numbers . The approach relies on results on the connection between the set of all -adic expansions () of and their associated approximation constants. As an application, explicit construction of real numbers with prescribed approximation properties are deduced and illustrated by Matlab plots.
In this paper, we extend the theory of simultaneous Diophantine approximation to infinite dimensions. Moreover, we discuss Dirichlet-type theorems in a very general framework and define what it means for such a theorem to be optimal. We show that optimality is implied by but does not imply the existence of badly approximable points.
Introduction. Soit θ un élément de ¹=ℝ/ℤ. Considérons la suite des multiples de θ, . Pour tout n ∈ ℕ, ordonnons les n+1 premiers termes de cette suite, 0 = y₀ ≤ y₁ ≤...≤ yₙ ≤ 1 = pθ, p=0,...,n. La suite (y₀,...,yₙ) découpe l’intervalle [0,1] en n+1 intervalles qui ont au plus trois longueurs distinctes, la plus grande de ces longueurs étant la somme des deux autres. Cette propriété a été conjecturé par Steinhaus, elle est étroitement liée au développement en fraction continue de θ. On peut aussi...