An improved estimate on the distribution mod 1 of powers of real matrices
In 1972 the author used a result of K.F. Roth on irregularities in distribution of sequences of real numbers to prove an analogous result related to the distribution of sequences of integers in prescribed residue classes. Here, a 1972 result of W.M. Schmidt, which is an improvement of Roth's result, is used to obtain an improved result for sequences of integers.
Soit un nombre de Pisot de degré ; nous avons montré précédemment que l’endomorphisme du tore dont est valeur propre est facteur du -shift bilatéral par une application continue ; nous prouvons ici (théorème 1) que l’application conserve l’entropie de toute mesure invariante sur le -shift. Ceci permet de définir l’entropie d’un nombre dans la base et d’en étudier la stabilité. Nous généralisons également des résultats de Kamae, Rauzy et Bernay.
In this paper we establish the distribution of prime numbers in a given arithmetic progression for which is squarefree.
We consider positional numeration system with negative base , as introduced by Ito and Sadahiro. In particular, we focus on arithmetical properties of such systems when is a quadratic Pisot number. We study a class of roots of polynomials , , and show that in this case the set of finite -expansions is closed under addition, although it is not closed under subtraction. A particular example is , the golden ratio. For such , we determine the exact bound on the number of fractional digits...