Sommes de Gauss et séries thêta
Soit , . Pour , on note la somme des chiffres de en base . Nous donnons des majorations de sommes d’exponentielles de la formepour , et . De telles sommes ont déjà été étudiées dans le cas par Gelfond, et pour entre autre par Coquet et Solinas. Nos résultats étendent le domaine de validité en de ces précédents travaux pour , sont plus précis et ont l’avantage d’être uniformes en et et effectifs en . Ce contrôle soigneux des paramètres nous permet d’obtenir divers types d’applications....
L’étude des systèmes dynamiques non archimédiens initiée par J. Lubin conduit à déterminer la ramification de séries à coefficients dans un corps fini , qui commutent entre elles pour la loi . Dans cet article nous traitons le cas des sous-groupes abéliens de qui correspondent par le foncteur corps de normes aux extensions abéliennes des extensions finies de , dont la ramification se stabilise dès le début.
Estimates are provided for sth moments of cubic smooth Weyl sums, when 4 ≤ s ≤ 8, by enhancing the author's iterative method that delivers estimates beyond classical convexity. As a consequence, an improved lower bound is presented for the number of integers not exceeding X that are represented as the sum of three cubes of natural numbers.