Displaying 21 – 40 of 53

Showing per page

Sommes des chiffres de multiples d'entiers

Cécile Dartyge, Gérald Tenenbaum (2005)

Annales de l'institut Fourier

Soit q , q 2 . Pour n , on note s q ( n ) la somme des chiffres de n en base q . Nous donnons des majorations de sommes d’exponentielles de la forme G ( x , y , θ ; α , 𝐡 ) = x < n x + y exp ( 2 i π ( α 1 s q ( h 1 n ) + + α r s q ( h r n ) + θ n ) ) , pour r * , 𝐡 * r et θ r . De telles sommes ont déjà été étudiées dans le cas r = 1 par Gelfond, et pour r 2 entre autre par Coquet et Solinas. Nos résultats étendent le domaine de validité en 𝐡 de ces précédents travaux pour r 2 , sont plus précis et ont l’avantage d’être uniformes en x et r et effectifs en 𝐡 . Ce contrôle soigneux des paramètres nous permet d’obtenir divers types d’applications....

Substitutions commutatives de séries formelles

François Laubie (2000)

Journal de théorie des nombres de Bordeaux

L’étude des systèmes dynamiques non archimédiens initiée par J. Lubin conduit à déterminer la ramification de séries à coefficients dans un corps fini k , qui commutent entre elles pour la loi . Dans cet article nous traitons le cas des sous-groupes abéliens de t + t 2 k [ [ t ] ] qui correspondent par le foncteur corps de normes aux extensions abéliennes des extensions finies de p , dont la ramification se stabilise dès le début.

Sums of three cubes, II

Trevor D. Wooley (2015)

Acta Arithmetica

Estimates are provided for sth moments of cubic smooth Weyl sums, when 4 ≤ s ≤ 8, by enhancing the author's iterative method that delivers estimates beyond classical convexity. As a consequence, an improved lower bound is presented for the number of integers not exceeding X that are represented as the sum of three cubes of natural numbers.

Currently displaying 21 – 40 of 53