Functional equations for Hurwitz series and partial zeta functions of orders.
Assuming the Riemann hypothesis, we investigate the distribution of gaps between the zeros of . We prove that a positive proportion of gaps are less than times the average spacing and, in the other direction, a positive proportion of gaps are greater than times the average spacing. We also exhibit the existence of infinitely many normalized gaps smaller (larger) than (, respectively).
AMS Subject Classification 2010: 11M26, 33C45, 42A38.Necessary and sufficient conditions for absence of zeros of ζ(s) in the half-plane σ ... Expansion of holomorphic functions in series of Hermite polynomials ...