Page 1 Next

Displaying 1 – 20 of 40

Showing per page

Chebotarev sets

Hershy Kisilevsky, Michael O. Rubinstein (2015)

Acta Arithmetica

We consider the problem of determining whether a set of primes, or, more generally, prime ideals in a number field, can be realized as a finite union of residue classes, or of Frobenius conjugacy classes. We give necessary conditions for a set to be realized in this manner, and show that the subset of primes consisting of every other prime cannot be expressed in this way, even if we allow a finite number of exceptions.

Circles passing through five or more integer points

Shaunna M. Plunkett-Levin (2013)

Acta Arithmetica

We find an improvement to Huxley and Konyagin’s current lower bound for the number of circles passing through five integer points. We conjecture that the improved lower bound is the asymptotic formula for the number of circles passing through five integer points. We generalise the result to circles passing through more than five integer points, giving the main theorem in terms of cyclic polygons with m integer point vertices. Theorem. Let m ≥ 4 be a fixed integer. Let W m ( R ) be the number of cyclic polygons...

Comportement asympotique des hauteurs des points de Heegner

Guillaume Ricotta, Nicolas Templier (2009)

Journal de Théorie des Nombres de Bordeaux

Le terme principal de la moyenne, sur les discriminants quadratiques satisfaisant la condition de Heegner, de la hauteur de Néron-Tate des points de Heegner d’une courbe elliptique rationnelle E a été déterminé dans [13]. Les auteurs ont également conjecturé l’expression du terme suivant. Dans cet article, il est démontré que cette expression est correcte et une asymptotique précise, qui sauve une puissance dans le terme d’erreur, est obtenue. Les annulations des coefficients de Fourier de formes...

Currently displaying 1 – 20 of 40

Page 1 Next