Page 1

Displaying 1 – 12 of 12

Showing per page

Basilejský problém devětkrát jinak

Jan Haluza (2022)

Pokroky matematiky, fyziky a astronomie

V tomto článku podrobně rozebereme celkem devět řešení tzv. basilejského problému (hledání součtu převrácených hodnot druhých mocnin přirozených čísel). První publikované řešení od L. Eulera využívá rozkladu ``nekonečného polynomu'' na součin kořenových činitelů. Druhé řešení pracuje s Taylorovým rozvojem funkce arkussinus a rekurentním vzorcem pro jistý určitý integrál, třetí je založeno na vztazích mezi goniometrickými funkcemi a exponenciálou a výpočtu limity s využitím l'Hospitalova pravidla....

Bounds for double zeta-functions

Isao Kiuchi, Yoshio Tanigawa (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we shall derive the order of magnitude for the double zeta-functionof Euler-Zagier type in the region 0 s j < 1 ( j = 1 , 2 ) .First we prepare the Euler-Maclaurinsummation formula in a suitable form for our purpose, and then we apply the theory of doubleexponential sums of van der Corput’s type.

Currently displaying 1 – 12 of 12

Page 1