Majoration au point 1 des fonctions L associées aux caractères de Dirichlet primitifs, ou au caractère d'une extension quadratique d'un corps quadratique imaginaire principal.
The first and second moments are established for the family of quadratic Dirichlet L-functions over the rational function field at the central point s=1/2, where the character χ is defined by the Legendre symbol for polynomials over finite fields and runs over all monic irreducible polynomials P of a given odd degree. Asymptotic formulae are derived for fixed finite fields when the degree of P is large. The first moment obtained here is the function field analogue of a result due to Jutila in the...
We obtain formulas for computing mean values of Dirichlet polynomials that have more terms than the length of the integration range. These formulas allow one to compute the contribution of off-diagonal terms provided one knows the correlation functions for the coefficients of the Dirichlet polynomials. A smooth weight is used to control error terms, and this weight can in typical applications be removed from the final result. Similar results are obtained for the tails of Dirichlet series. Four examples...
This paper establishes new bridges between zeta functions in number theory and modern harmonic analysis, namely between the class of complex functions, which contains the zeta functions of arithmetic schemes and closed with respect to product and quotient, and the class of mean-periodic functions in several spaces of functions on the real line. In particular, the meromorphic continuation and functional equation of the zeta function of an arithmetic scheme with its expected analytic shape is shown...
Il est connu (voir [1], [3]) que lorsque χ varie parmi les caractères de Dirichlet non quadratiques, nous avons . Nous montrons ici qu’en se restreignant aux caractères d’ordre impair donné, nous avons . Il serait évidemment bien plus satisfaisant de parvenir à prouver un tel résultat sans restreindre χ à varier parmi des caractères d’ordre fixé. Pour les caractères d’ordre pair, nous ne pouvons établir un tel résultat qu’en nous restreignant aux caractères pour lesquels les conducteurs de restent...
The well-known Wolstenholme’s Theorem says that for every prime the -st partial sum of the harmonic series is congruent to modulo . If one replaces the harmonic series by for even, then the modulus has to be changed from to just . One may consider generalizations of this to multiple harmonic sums (MHS) and alternating multiple harmonic sums (AMHS) which are partial sums of multiple zeta value series and the alternating Euler sums, respectively. A lot of results along this direction...
We evaluate the integral mollified second moment of L-functions of primitive cusp forms and we obtain, for such L-functions, an explicit positive proportion of zeros which lie on the critical line.