Indépendance linéaire des valeurs des polylogarithmes
Nous montrons que pour tout rationnel de , l’ensemble des valeurs des polylogarithmes contient une infinité de nombres -linéairement indépendants.
Nous montrons que pour tout rationnel de , l’ensemble des valeurs des polylogarithmes contient une infinité de nombres -linéairement indépendants.
AMS Subj. Classification: MSC2010: 11F72, 11M36, 58J37We point out the importance of the integral representations of the logarithmic derivative of the Selberg zeta function valid up to the critical line, i.e. in the region that includes the right half of the critical strip, where the Euler product definition of the Selberg zeta function does not hold. Most recent applications to the behavior of the Selberg zeta functions associated to a degenerating sequence of finite volume, hyperbolic manifolds of...
Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.
Les valeurs aux entiers pairs (strictement positifs) de la fonction de Riemann sont transcendantes, car ce sont des multiples rationnels de puissances de . En revanche, on sait très peu de choses sur la nature arithmétique des , pour entier. Apéry a démontré en 1978 que est irrationnel. Rivoal a prouvé en 2000 qu’une infinité de sont irrationnels, mais sans pouvoir en exhiber aucun autre que . Il existe plusieurs points de vue sur la preuve d’Apéry ; celui des séries hypergéométriques...