Tauberian theorems for sum sets
Page 1 Next
P. Erdös, B. Gordon, L. Rubel, E. Straus (1964)
Acta Arithmetica
Doyle, Peter G., Rossetti, Juan Pablo (2004)
Geometry & Topology
David J. Wright (1985)
Mathematische Annalen
Kohji Matsumoto, Yoshio Tanigawa (2003)
Journal de théorie des nombres de Bordeaux
Multiple Dirichlet series of several complex variables are considered. Using the Mellin-Barnes integral formula, we prove the analytic continuation and an upper bound estimate.
Robert A. Smith (1980)
Journal für die reine und angewandte Mathematik
Landreau, Bernard, Richard, Florent (2002)
Experimental Mathematics
R. Balasubramanian, B. Calado, H. Queffélec (2006)
Studia Mathematica
We extend to the setting of Dirichlet series previous results of H. Bohr for Taylor series in one variable, themselves generalized by V. I. Paulsen, G. Popescu and D. Singh or extended to several variables by L. Aizenberg, R. P. Boas and D. Khavinson. We show in particular that, if with , then and even slightly better, and , C being an absolute constant.
Stéphane Louboutin (1997)
Acta Arithmetica
Johannes Schoißengeier (1979)
Monatshefte für Mathematik
Shimura, Goro (2008)
Documenta Mathematica
Conrey, J.B., Iwaniec, H. (2000)
Annals of Mathematics. Second Series
Lawrence Washington (1981)
Acta Arithmetica
H. Kumagai (1999)
Acta Arithmetica
U. Balakrishnan, Y.-F. S. Pétermann (1996)
Acta Arithmetica
D. R. Heath-Brown (1992)
Acta Arithmetica
H. Niederreiter (1973)
Mathematische Annalen
Riad Masri (2007)
Acta Arithmetica
Masa-Nori Ishida (1992)
Mathematische Annalen
D. Zagier, J. Harer (1986)
Inventiones mathematicae
Matthew P. Young (2009)
Acta Arithmetica
Page 1 Next