Displaying 441 – 460 of 715

Showing per page

On the value distribution of a class of arithmetic functions

Werner Georg Nowak (1996)

Commentationes Mathematicae Universitatis Carolinae

This article deals with the value distribution of multiplicative prime-independent arithmetic functions ( α ( n ) ) with α ( n ) = 1 if n is N -free ( N 2 a fixed integer), α ( n ) > 1 else, and α ( 2 n ) . An asymptotic result is established with an error term probably definitive on the basis of the present knowledge about the zeros of the zeta-function. Applications to the enumerative functions of Abelian groups and of semisimple rings of given finite order are discussed.

On the variation of certain fractional part sequences

Michel Balazard, Leila Benferhat, Mihoub Bouderbala (2021)

Communications in Mathematics

Let b > a > 0 . We prove the following asymptotic formula n 0 | { x / ( n + a ) } - { x / ( n + b ) } | = 2 π ζ ( 3 / 2 ) c x + O ( c 2 / 9 x 4 / 9 ) , with c = b - a , uniformly for x 40 c - 5 ( 1 + b ) 27 / 2 .

Oscillation of Mertens’ product formula

Harold G. Diamond, Janos Pintz (2009)

Journal de Théorie des Nombres de Bordeaux

Mertens’ product formula asserts that p x 1 - 1 p log x e - γ as x . Calculation shows that the right side of the formula exceeds the left side for 2 x 10 8 . It was suggested by Rosser and Schoenfeld that, by analogy with Littlewood’s result on π ( x ) - li x , this and a complementary inequality might change their sense for sufficiently large values of x . We show this to be the case.

Oscillations d'un terme d'erreur lié à la fonction totient de Jordan

Y.-F. S. Pétermann (1991)

Journal de théorie des nombres de Bordeaux

Let J k ( n ) : = n k p n ( 1 - p - k ) (the k -th Jordan totient function, and for k = 1 the Euler phi function), and consider the associated error term E k ( x ) : = n x J k ( n ) - x k + 1 ( k + 1 ) ζ ( k + 1 ) . When k 2 , both i k : = E k ( x ) x - k and s k : = lim sup E k ( x ) x - k are finite, and we are interested in estimating these quantities. We may consider instead I k : = lim inf n , n d 1 (d)dk ( 12 - { nd} ), since from [AS] i k = I k - ( ζ ( k + 1 ) ) - 1 and from the present paper s k = - i k . We show that I k belongs to an interval of the form 1 2 ζ ( k ) - 1 ( k - 1 ) N k - 1 , 1 2 ζ ( k ) , where N = N ( k ) as k . From a more practical point of view we describe an algorithm capable of yielding arbitrary good approximations of I k . We apply this algorithm...

Pairs of square-free values of the type n 2 + 1 , n 2 + 2

Stoyan Dimitrov (2021)

Czechoslovak Mathematical Journal

We show that there exist infinitely many consecutive square-free numbers of the form n 2 + 1 , n 2 + 2 . We also establish an asymptotic formula for the number of such square-free pairs when n does not exceed given sufficiently large positive number.

Pretentiousness in analytic number theory

Andrew Granville (2009)

Journal de Théorie des Nombres de Bordeaux

In this report, prepared specially for the program of the XXVième Journées Arithmétiques, we describe how, in joint work with K. Soundararajan and Antal Balog, we have developed the notion of “pretentiousness” to help us better understand several key questions in analytic number theory.

Currently displaying 441 – 460 of 715