On a sum involving the Möbius function
Let be the Ramanujan sum, i.e. , where μ is the Möbius function. In a paper of Chan and Kumchev (2012), asymptotic formulas for (k = 1,2) are obtained. As an analogous problem, we evaluate (k = 1,2), where .
Let be the Ramanujan sum, i.e. , where μ is the Möbius function. In a paper of Chan and Kumchev (2012), asymptotic formulas for (k = 1,2) are obtained. As an analogous problem, we evaluate (k = 1,2), where .
Let 1 < k < 33/29. We prove that if λ₁, λ₂ and λ₃ are non-zero real numbers, not all of the same sign and such that λ₁/λ₂ is irrational, and ϖ is any real number, then for any ε > 0 the inequality has infinitely many solutions in prime variables p₁, p₂, p₃.
For every positive integer let be the largest prime number . Given a positive integer , we study the positive integer such that if we define recursively for , then is a prime or . We obtain upper bounds for as well as an estimate for the set of whose takes on a fixed value .