Displaying 701 – 720 of 1791

Showing per page

On a sum involving the Möbius function

I. Kiuchi, M. Minamide, Y. Tanigawa (2015)

Acta Arithmetica

Let c q ( n ) be the Ramanujan sum, i.e. c q ( n ) = d | ( q , n ) d μ ( q / d ) , where μ is the Möbius function. In a paper of Chan and Kumchev (2012), asymptotic formulas for n y ( q x c q ( n ) ) k (k = 1,2) are obtained. As an analogous problem, we evaluate n y ( n x c ̂ q ( n ) ) k (k = 1,2), where c ̂ q ( n ) : = d | ( q , n ) d | μ ( q / d ) | .

On a ternary Diophantine problem with mixed powers of primes

Alessandro Languasco, Alessandro Zaccagnini (2013)

Acta Arithmetica

Let 1 < k < 33/29. We prove that if λ₁, λ₂ and λ₃ are non-zero real numbers, not all of the same sign and such that λ₁/λ₂ is irrational, and ϖ is any real number, then for any ε > 0 the inequality | λ p + λ p ² + λ p k + ϖ | ( m a x j p j ) - ( 33 - 29 k ) / ( 72 k ) + ε has infinitely many solutions in prime variables p₁, p₂, p₃.

On an arithmetic function considered by Pillai

Florian Luca, Ravindranathan Thangadurai (2009)

Journal de Théorie des Nombres de Bordeaux

For every positive integer n let p ( n ) be the largest prime number p n . Given a positive integer n = n 1 , we study the positive integer r = R ( n ) such that if we define recursively n i + 1 = n i - p ( n i ) for i 1 , then n r is a prime or 1 . We obtain upper bounds for R ( n ) as well as an estimate for the set of n whose R ( n ) takes on a fixed value k .

Currently displaying 701 – 720 of 1791