Displaying 901 – 920 of 1791

Showing per page

On the composition of the Euler function and the sum of divisors function

Jean-Marie De Koninck, Florian Luca (2007)

Colloquium Mathematicae

Let H(n) = σ(ϕ(n))/ϕ(σ(n)), where ϕ(n) is Euler's function and σ(n) stands for the sum of the positive divisors of n. We obtain the maximal and minimal orders of H(n) as well as its average order, and we also prove two density theorems. In particular, we answer a question raised by Golomb.

On the concentration of certain additive functions

Dimitris Koukoulopoulos (2014)

Acta Arithmetica

We study the concentration of the distribution of an additive function f when the sequence of prime values of f decays fast and has good spacing properties. In particular, we prove a conjecture by Erdős and Kátai on the concentration of f ( n ) = p | n ( l o g p ) - c when c > 1.

On the counting function for the generalized Niven numbers

Ryan Daileda, Jessica Jou, Robert Lemke-Oliver, Elizabeth Rossolimo, Enrique Treviño (2009)

Journal de Théorie des Nombres de Bordeaux

Given an integer base q 2 and a completely q -additive arithmetic function f taking integer values, we deduce an asymptotic expression for the counting function N f ( x ) = # 0 n < x | f ( n ) n under a mild restriction on the values of f . When f = s q , the base q sum of digits function, the integers counted by N f are the so-called base q Niven numbers, and our result provides a generalization of the asymptotic known in that case.

Currently displaying 901 – 920 of 1791