A ternary Diophantine inequality over primes
Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].
Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].
We examine additive properties of dense subsets of sifted sequences, and in particular prove under very general assumptions that such a sequence is an additive asymptotic basis whose order is very well controlled.