Ein Beitrag zur Arithmetik der Bernoullischen Zahlen imaginär-quadratischer Zahlkörper.
For certain tame abelian covers of arithmetic surfaces we obtain formulas, involving a quadratic form derived from intersection numbers, for the equivariant Euler characteristics of both the canonical sheaf and also its square root. These formulas allow us to carry out explicit calculations; in particular, we are able to exhibit examples where these two Euler characteristics and that of the structure sheaf are all different and non-trivial. Our results are obtained by using resolvent techniques...
We give an explicit construction of an integral basis for a radical function field , where , under the assumptions and . The field discriminant of is also computed. We explain why these questions are substantially easier than the corresponding ones in number fields. Some formulae for the -signatures of a radical function field are also discussed in this paper.