Ein Beitrag zur Arithmetik der Bernoullischen Zahlen imaginär-quadratischer Zahlkörper.
Page 1
Jürgen Kallies (1985)
Journal für die reine und angewandte Mathematik
H. Minkowski (1899)
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
Kurt Girstmair (1987)
Monatshefte für Mathematik
Jürgen Hinz (1982)
Acta Arithmetica
Wolfgang Schmidt (1990)
Acta Arithmetica
Paulo Ribenboim (1987)
Revista colombiana de matematicas
Lou van den Dries (1988)
Journal für die reine und angewandte Mathematik
Pierre MOUSSA (1984/1985)
Seminaire de Théorie des Nombres de Bordeaux
Maurice Mignotte (1977/1978)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
Ph. Cassou-Noguès, M.J. Taylor (2012)
Annales de l’institut Fourier
For certain tame abelian covers of arithmetic surfaces we obtain formulas, involving a quadratic form derived from intersection numbers, for the equivariant Euler characteristics of both the canonical sheaf and also its square root. These formulas allow us to carry out explicit calculations; in particular, we are able to exhibit examples where these two Euler characteristics and that of the structure sheaf are all different and non-trivial. Our results are obtained by using resolvent techniques...
Volker Schulze (1982)
Acta Arithmetica
A. Prestel, J. Schmid (1990)
Journal für die reine und angewandte Mathematik
Qingquan Wu (2010)
Journal de Théorie des Nombres de Bordeaux
We give an explicit construction of an integral basis for a radical function field , where , under the assumptions and . The field discriminant of is also computed. We explain why these questions are substantially easier than the corresponding ones in number fields. Some formulae for the -signatures of a radical function field are also discussed in this paper.
Kenneth S. Williams (1976)
Journal für die reine und angewandte Mathematik
Page 1