The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 10 of 10

Showing per page

Non-Wieferich primes in number fields and a b c -conjecture

Srinivas Kotyada, Subramani Muthukrishnan (2018)

Czechoslovak Mathematical Journal

Let K / be an algebraic number field of class number one and let 𝒪 K be its ring of integers. We show that there are infinitely many non-Wieferich primes with respect to certain units in 𝒪 K under the assumption of the a b c -conjecture for number fields.

Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis

Kevin J. McGown (2012)

Journal de Théorie des Nombres de Bordeaux

Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant Δ = 7 2 , 9 2 , 13 2 , 19 2 , 31 2 , 37 2 , 43 2 , 61 2 , 67 2 , 103 2 , 109 2 , 127 2 , 157 2 . A large part of the proof is in establishing the following more general result: Let K be a Galois number field of odd prime degree and conductor f . Assume the GRH for ζ K ( s ) . If 38 ( - 1 ) 2 ( log f ) 6 log log f < f , then K is not norm-Euclidean.

Currently displaying 1 – 10 of 10

Page 1