Second order strong divisibility sequences in an algebraic number field
We prove density modulo of the sets of the formwhere is a pair of rationally independent algebraic integers of degree satisfying some additional assumptions, and is any sequence of real numbers.
Pour tout , on calcule un rang tel que tout entier algébrique de degré au moins ait deux conjugués vérifiant . De plus, on donne une nouvelle preuve de l’égalité .
The Steinitz class of a number field extension is an ideal class in the ring of integers of , which, together with the degree of the extension determines the -module structure of . We denote by the set of classes which are Steinitz classes of a tamely ramified -extension of . We will say that those classes are realizable for the group ; it is conjectured that the set of realizable classes is always a group.In this paper we will develop some of the ideas contained in [7] to obtain some...
Nous déterminons sous certaines hypothèses, un système fondamental d’unités du corps non pur et de son sous-corps quadratique, où est solution du polynômeavec , , , , , non nuls.