New solutions to xyz = x+y+z = 1 in integers of quartic fields
Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminantA large part of the proof is in establishing the following more general result: Let be a Galois number field of odd prime degree and conductor . Assume the GRH for . Ifthen is not norm-Euclidean.
On démontre, à partir de résultats de H.J. Godwin, H. Brunotte et F. Halter-Koch, le théorème suivant : soit un corps cubique cyclique de conducteur dont le groupe de Galois est engendré par ; soit le groupe des unités de norme 1.Soit , , telle que soit minimum. Alors est un -générateur de .
Let be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields , which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).