Tame kernels of cubic cyclic fields
Let denote the field of rational numbers. Let be a cyclic quartic extension of . It is known that there are unique integers , , , such that where The conductor of is , where A simple proof of this formula for is given, which uses the basic properties of quartic Gauss sums.
We show that a cubic algebraic integer over a number field with zero trace is a difference of two conjugates over of an algebraic integer. We also prove that if is a normal cubic extension of the field of rational numbers, then every integer of with zero trace is a difference of two conjugates of an integer of if and only if the adic valuation of the discriminant of is not
General concepts and strategies are developed for identifying the isomorphism type of the second -class group , that is the Galois group of the second Hilbert -class field , of a number field , for a prime . The isomorphism type determines the position of on one of the coclass graphs , , in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field and of its -class group , the position of is restricted to certain admissible branches of coclass...
Let be a pure cubic field, with , where is a cube-free integer. We will determine the reduced ideals of the order of which coincides with the maximal order of in the case where is square-free and .