Page 1

Displaying 1 – 7 of 7

Showing per page

A generalization of a result on integers in metacyclic extensions

James Carter (1999)

Colloquium Mathematicae

Let p be an odd prime and let c be an integer such that c>1 and c divides p-1. Let G be a metacyclic group of order pc and let k be a field such that pc is prime to the characteristic of k. Assume that k contains a primitive pcth root of unity. We first characterize the normal extensions L/k with Galois group isomorphic to G when p and c satisfy a certain condition. Then we apply our characterization to the case in which k is an algebraic number field with ring of integers ℴ, and, assuming some...

Currently displaying 1 – 7 of 7

Page 1