Page 1

Displaying 1 – 4 of 4

Showing per page

Ramification groups and Artin conductors of radical extensions of

Filippo Viviani (2004)

Journal de Théorie des Nombres de Bordeaux

We study the ramification properties of the extensions ( ζ m , a m ) / under the hypothesis that m is odd and if p m than either p v p ( a ) or p v p ( m ) v p ( a ) ( v p ( a ) and v p ( m ) are the exponents with which p divides a and m ). In particular we determine the higher ramification groups of the completed extensions and the Artin conductors of the characters of their Galois group. As an application, we give formulas for the p -adique valuation of the discriminant of the studied global extensions with m = p r .

Relative Bogomolov extensions

Robert Grizzard (2015)

Acta Arithmetica

A subfield K ⊆ ℚ̅ has the Bogomolov property if there exists a positive ε such that no non-torsion point of K × has absolute logarithmic height below ε. We define a relative extension L/K to be Bogomolov if this holds for points of L × K × . We construct various examples of extensions which are and are not Bogomolov. We prove a ramification criterion for this property, and use it to show that such extensions can always be constructed if some rational prime has bounded ramification index in K.

Currently displaying 1 – 4 of 4

Page 1