Page 1

Displaying 1 – 7 of 7

Showing per page

Décomposition des nombres premiers dans des extensions non abéliennes

Philippe Satge (1977)

Annales de l'institut Fourier

Soit K un corps de nombre galoisien non abélien sur Q dont le groupe de Galois G possède un sous-groupe abélien distingué H vérifiant les propriétés suivantes : l’ordre de H est impair si son corps des invariants est un corps réel de degré strictement supérieur à 2, et l’application transfert qui lui est associée est l’application triviale. On montre que la décomposition d’un nombre premier dans une telle extension dépend de la représentation de ce nombre par certaines formes à coefficients entiers...

Dihedral and cyclic extensions with large class numbers

Peter J. Cho, Henry H. Kim (2012)

Journal de Théorie des Nombres de Bordeaux

This paper is a continuation of [2]. We construct unconditionally several families of number fields with large class numbers. They are number fields whose Galois closures have as the Galois groups, dihedral groups D n , n = 3 , 4 , 5 , and cyclic groups C n , n = 4 , 5 , 6 . We first construct families of number fields with small regulators, and by using the strong Artin conjecture and applying some modification of zero density result of Kowalski-Michel, we choose subfamilies such that the corresponding L -functions are zero free...

Currently displaying 1 – 7 of 7

Page 1