Displaying 341 – 360 of 400

Showing per page

Une caractérisation de l’existence de l’élément primitif pour une extension gr-séparable des gradués associés à une extension de corps valués

M’hammed Boulagouaz (2009)

Annales mathématiques Blaise Pascal

Un anneau gradué unitaire où tout élément homogène non nul est inversible est appelé un anneau à division gradué. Cet article est une contribution à l’étude de la correspondance existante entre les anneaux à division valués et les anneaux à division gradués , voir [1], [2], [3], [4], [6] et [7].Il a été prouvé dans [5, Remarque de la page 26], que toute extension gr-séparable finie de corps gradués n’est pas simple. Dans ce travail on donne un critère pour l’existence d’élément primitif dans une...

Unit indices and cohomology for biquadratic extensions of imaginary quadratic fields

Marcin Mazur, Stephen V. Ullom (2008)

Journal de Théorie des Nombres de Bordeaux

We investigate as Galois module the unit group of biquadratic extensions L / M of number fields. The 2 -rank of the first cohomology group of units of L / M is computed for general M . For M imaginary quadratic we determine a large portion of the cases (including all unramified L / M ) where the index [ V : V 1 V 2 V 3 ] takes its maximum value 8 , where V are units mod torsion of L and V i are units mod torsion of one of the 3 quadratic subfields of L / M .

Unités cyclotomiques, unités semi-locales et -extensions

Roland Gillard (1979)

Annales de l'institut Fourier

Soient K un corps abélien réel, un nombre premier, premier au degré de K / Q . Cet article utilise une conjecture de J. Coates et S. Lichtenbaum (ou une conjecture analogue pour = 2 , qu’il énonce et discute) pour étudier, pour chaque étage de la Z -extension de K , la décomposition de la -partie de la formule analytique du nombre de classes suivant l’action du groupe de Galois de K / Q . Pour cela, est établie une formule sur la Φ -composante ( Φ -caractère -adique irréductible) du quotient du groupe des unités...

Unités cyclotomiques, unités semi-locales et -extensions. II

Roland Gillard (1979)

Annales de l'institut Fourier

Soient K un corps abélien réel, un nombre premier, premier à [ K : Q ] et Y n le quotient du groupe des unités semi-locales de K ( 1 n ) par celui des unités cyclotomiques : on donne la structure galoisienne de la limite projective des Y n , généralisant un théorème d’Iwasawa, et on applique ceci à la comparaison de conjecture classique sur la limite projective des groupes de classes.

Currently displaying 341 – 360 of 400