Displaying 101 – 120 of 400

Showing per page

Elasticity of factorizations in atomic monoids and integral domains

Franz Halter-Koch (1995)

Journal de théorie des nombres de Bordeaux

For an atomic domain R , its elasticity ρ ( R ) is defined by : ρ ( R ) = sup { m / n u 1 u m = v 1 v n for irreducible u j , v i R } . We study the elasticity of one-dimensional noetherian domains by means of the more subtle invariants μ m ( R ) defined by : μ m ( R ) = sup { n u 1 u m = u 1 v n for irreducible u j , v i R } . As a main result we characterize all orders in algebraic number fields having finite elasticity. On the way, we obtain a series of results concerning the invariants μ m and ρ for monoids and integral domains which are of independent interest.

Euclidean fields having a large Lenstra constant

Armin Leutbecher (1985)

Annales de l'institut Fourier

Based on a method of H. W. Lenstra Jr. in this note 143 new Euclidean number fields are given of degree n = 7 , 8 , 9 and 10 and of unit rank 5 . The search for these examples also revealed several other fields of small discriminant compared with the lower bounds of Odlyzko.

Factorization in Krull monoids with infinite class group

Florian Kainrath (1999)

Colloquium Mathematicae

Let H be a Krull monoid with infinite class group and such that each divisor class of H contains a prime divisor. We show that for each finite set L of integers ≥2 there exists some h ∈ H such that the following are equivalent: (i) h has a representation h = u 1 · . . . · u k for some irreducible elements u i , (ii) k ∈ L.

Currently displaying 101 – 120 of 400