On the ring of -integers of a cyclic -extension over a number field
Let be a prime number. A finite Galois extension of a number field with group has a normal -integral basis (-NIB for short) when is free of rank one over the group ring . Here, is the ring of -integers of . Let be a power of and a cyclic extension of degree . When , we give a necessary and sufficient condition for to have a -NIB (Theorem 3). When and , we show that has a -NIB if and only if has a -NIB (Theorem 1). When divides , we show that this descent property...