Page 1

Displaying 1 – 19 of 19

Showing per page

On Jannsen's conjecture for Hecke characters of imaginary quadratic fields.

Francesc Bars (2007)

Publicacions Matemàtiques

We present a collection of results on a conjecture of Jannsen about the p-adic realizations associated to Hecke characters over an imaginary quadratic field K of class number 1.The conjecture is easy to check for Galois groups purely of local type (Section 1). In Section 2 we define the p-adic realizations associated to Hecke characters over K. We prove the conjecture under a geometric regularity condition for the imaginary quadratic field K at p, which is related to the property that a global Galois...

On p 2 -Ranks in the Class Field Tower Problem

Christian Maire, Cam McLeman (2014)

Annales mathématiques Blaise Pascal

Much recent progress in the 2-class field tower problem revolves around demonstrating infinite such towers for fields – in particular, quadratic fields – whose class groups have large 4-ranks. Generalizing to all primes, we use Golod-Safarevic-type inequalities to analyse the source of the p 2 -rank of the class group as a quantity of relevance in the p -class field tower problem. We also make significant partial progress toward demonstrating that all real quadratic number fields whose class groups...

On the n -torsion subgroup of the Brauer group of a number field

Hershy Kisilevsky, Jack Sonn (2003)

Journal de théorie des nombres de Bordeaux

Given a number field K Galois over the rational field , and a positive integer n prime to the class number of K , there exists an abelian extension L / K (of exponent n ) such that the n -torsion subgroup of the Brauer group of K is equal to the relative Brauer group of L / K .

Currently displaying 1 – 19 of 19

Page 1