Arithmetic and Galois module structure for tame extensions.
The main goal of this paper is to prove a formula that expresses the limit behaviour of Dedekind zeta functions for in families of number fields, assuming that the Generalized Riemann Hypothesis holds. This result can be viewed as a generalization of the Brauer–Siegel theorem. As an application we obtain a limit formula for Euler–Kronecker constants in families of number fields.
Let K = Q(ζp) and let hp be its class number. Kummer showed that p divides hp if and only if p divides the numerator of some Bernoulli number. In this expository note we discuss the generalizations of this type of criterion to totally real fields and quadratic imaginary fields.
A bibliography of recent papers on lower bounds for discriminants of number fields and related topics is presented. Some of the main methods, results, and open problems are discussed.
Introduction. The vanishing orders of L-functions at the centers of their functional equations are interesting objects to study as one sees, for example, from the Birch-Swinnerton-Dyer conjecture on the Hasse-Weil L-functions associated with elliptic curves over number fields. In this paper we study the central zeros of the following types of L-functions: (i) the derivatives of the Mellin transforms of Hecke eigenforms for SL₂(ℤ), (ii) the Rankin-Selberg...
This first part of this paper gives a proof of the main conjecture of Iwasawa theory for abelian base fields, including the case , by Kolyvagin’s method of Euler systems. On the way, one obtains a general result on local units modulo circular units. This is then used to deduce theorems on the order of -parts of -class groups of abelian number fields: first for relative class groups of real fields (again including the case ). As a consequence, a generalization of the Gras conjecture is stated...
Pour premier impair, l’étude du -groupe des classes d’idéaux des extensions abéliennes de degré premier à se ramène à celle de groupes notés , où parcourt un certain ensemble de caractères -adiques irréductibles.Il est démontré, dans cet article, une généralisation des congruences de Leopoldt et Fresnel entre les fonctions -adiques et les nombres de Bernoulli généralisés. Cette généralisation conduit à une amélioration de la connaissance des : en effet, la juxtaposition de ce résultat...