A comparison of Selmer groups.
This article describes a computer algorithm which exhibits a sufficient condition for a number field to be euclidean for the norm. In the survey [3] p 405, Franz Lemmermeyer pointed out that 743 number fields where known (march 1994) to be euclidean (the first one, , discovered by Euclid, three centuries B.C.!). In the first months of 1997, we found more than 1200 new euclidean number fields of degree 4, 5 and 6 with a computer algorithm involving classical lattice properties of the embedding of...
We present a constructive proof of the fact that the set of algebraic Pfaff equations without algebraic solutions over the complex projective plane is dense in the set of all algebraic Pfaff equations of a given degree.
We give a new formula for the relative class number of an imaginary abelian number field by means of determinant with elements being integers of a cyclotomic field generated by the values of an odd Dirichlet character associated to . We prove it by a specialization of determinant formula of Hasse.